
ETMS System Design Document
Version 5.0

4-1

Section 4

System Hardware and Software

This section describes the hardware and software of the HP/Apollo DOMAIN computer
system on which the Enhanced Traffic Management System (ETMS) was developed and on
which it operates. The description is neither complete nor in depth, but provides a brief
overview of the ETMS computing environment, highlighting those system features that
significantly affect the ETMS software design. (HP/Apollo provides an extensive set of
documentation covering all aspects of the system.)

The DOMAIN system provides an environment of distributed workstations (commonly
referred to as nodes) connected through a high-speed Local Area Network (LAN) and
accessible through a network-wide, virtual operating system. Each node can operate as a
stand-alone computer. The connection of the nodes (physically through the LAN and virtually
through the operating system) also permits any user or application to use all or part of the
total network resources (processors, memory, disk space, peripherals). The distributed
approach, when implemented correctly, provides great flexibility in the design and
development of a software system; as the system requirements change, the available
hardware resources can be expanded or changed incrementally. In addition, the operating
system makes data communications between the functions distributed within the network
easy to implement, efficient, and reliable.

4.1 System Hardware

This section describes important aspects of the HP/Apollo hardware that runs the ETMS: the
types of HP/Apollo nodes used, their configuration, and the characteristics of the LAN.

4.1.1 Node Types

The ETMS relies primarily on two types of nodes for its operation: the DN4000/4500 and the
HP433. The DN4000/4500s are used to handle the communications between the Volpe Center
and the FAA sites. The HP433s are used for computation-heavy processes (traffic modeling)
and for graphics-related processing (the Aircraft Situation Display [ASD]).

The DN4000 uses the 25MHz, 32-bit MC68020 central processor and the MC68881 floating
point co-processor. The DN4500 was upgraded to the MC68030. Each DN4000/4500 used in
the ETMS is configured with the maximum available memory size (32 megabytes) and the
largest available hard disk (330 Megabytes for the DN4000 and 660 Megabytes for the
DN4500). The DN4000/4500 allows up to 1024 concurrent processes, each of which can

ETMS System Design Document
Version 5.0

4-2

address up to 1 gigabyte of virtual memory. Each DN4000/4500 is equipped with a standard
keyboard (typically with a mouse) and a 19-inch, high-resolution, black-and-white display.

The HP433 uses a 33MHz, 32-bit MC68040 central processor and 128K cache memory. Each
HP433 is configured with 64 Megabytes of physical memory (expandable to 128 Megabytes)
and a 2 Gigabyte hard disk. Each HP433 is equipped with a 19-inch, high-resolution, 1280 x
1024, color graphics display with eight built-in planes of display memory and 256
simultaneously available colors. The HP433 allows up to 1024 concurrent processes, each of
which can address up to 1 Gigabyte of virtual memory. Each HP433 is equipped with a
standard keyboard (typically with a 3-button trackball). Each HP433 is also equipped with
two interfaces: an Apollo Token Ring and an Ethernet 802.3.

4.1.2 Local Area Network

The HP/Apollo DOMAIN nodes are connected at a local site through a proprietary HP/Apollo
LAN, using a ring structure and a token-passing protocol. The network provides an
inter-node communication speed of 12 million bits per second and supports up to 1,000 nodes
on a single network loop, with a maximum inter-node distance of 1,000 feet.

4.2 System Software

This section describes the key features of the DOMAIN system software used to develop and
execute the ETMS:

• Domain/OS operating system

• Programming languages

• Domain Software Engineering Environment (DSEE)

• System routines for

o Graphics

o Mailboxes and Sockets

o Mapped files

o Mutual exclusion locks

o Eventcounts

o Process management

o Miscellaneous functions

4.2.1 Domain/OS Operating System

ETMS System Design Document
Version 5.0

4-3

The Domain/OS is an operating system developed by HP/Apollo. It allows a user or
application to take full advantage of the hardware network by providing access to the network
resources at the operating system level. Domain/OS allows a user to execute multiple
processes on any node of the network, with a total limit of 1024 processes on any individual
node. Each process runs in virtual memory the size of which (from three megabytes to two
gigabytes) depends on the type of node on which it is executing. The virtual processes utilize
physical memory through a proprietary demand paging algorithm.

Domain/OS also allows any user or process to access any disk storage device on the network
in a virtual manner. Each disk on the network is identified by a logical name. UNIX-like, tree-
structured directories are used to organize the files on the disks. The directories can span any
number of physical locations on the network since a leaf of a tree on one node can be linked
to a directory on another node.

Domain/OS can be configured in one of three environments: AEGIS, UNIX SysV, or UNIX
BSD. ETMS nodes are configured to use the AEGIS environment, which allows them to take
the fullest advantage of the HP/Apollo network.

Domain/OS supports multi-windowing through the DOMAIN Display Manager. The Display
Manager allows users to create windows for executing processes (UNIX-like shells) or for
editing files (edit pads). Processes also create windows for input or output. Both users and/or
processes can flexibly control the positioning of windows on the display.

Domain/OS also supports multi-windowing through X Windows and the Motif Window
Manager. As with the DOMAIN Display Manager, windows can be created and manipulated
by users or processes. UNIX editors, such as vi, can be used to edit files within the X
Windows environment. Domain/OS can be configured to run either the DOMAIN Display
Manager or the X Windows system, or both simultaneously.

4.2.2 Programming Languages

HP/Apollo supports a number of languages in the DOMAIN environment. ETMS was
developed almost exclusively in the Pascal programming language, chosen for its ease of
maintainability. The HP/Apollo version of Pascal features many extensions to standard,
classroom Pascal-extensions which resolve many of the standard version's practical
limitations. The most significant is the ability to develop source code in modules that may be
compiled separately and later bound into an executable program.

HP/Apollo also supports the C programming language. A small amount of C code was written
to perform the semantic parsing of the flight path fields from the NAS messages. C was
chosen for the job because its superior string handling capabilities made design and
implementation of code more straightforward and efficient. The C functions are accessed
through Pascal subroutine calls which transfer control to the appropriate C routines. Since the
initial implementation, several major functions (SDB, Parser, EDCT) have been converted
from Pascal to C.

ETMS System Design Document
Version 5.0

4-4

4.2.3 DOMAIN Software Engineering Environment

The DSEE is a software and database management system for supporting a software
engineering project development effort, particularly in a team environment. DSEE supports
developers in the following ways:

• Maintaining and tracking successive versions of source code modules.

• Representing the dependency relationships between source code modules and
object code.

• Notifying developers automatically of changes to source code modules.

• Coordinating simultaneous development of common modules between
developers.

DSEE supports configuration management in the following ways:

• Tracking source code histories.

• Allowing complete recoverability of old versions of systems.

• Performing organized, automatic releases.

DSEE is fully integrated with the DOMAIN system to allow editors, compilers, and other
programs to gain access to the source code managed by DSEE and to allow the development
environment to spread throughout the network.

DSEE consists of five types of software managers performing different functions. Three of
these managers are significant in the ETMS development: the history manager, the
configuration manager, and the release manager.

(1) History Manager — handles the source code. Code is developed in DSEE
elements (corresponding to files) organized in DSEE libraries (corresponding to
directories). The history manager maintains every version of an element
throughout its development history. (The versions are stored internally by
DSEE as incremental changes, providing very compact storage.) An element
must be reserved to be worked on. (This prevents other developers from
changing it simultaneously.) The developer is also required to enter comments
explaining why the element was reserved.

 The history manager allows branches in the line of descent of an element,
which supports simultaneous development in a controlled manner. Separate
branches can be continued indefinitely or can be merged together using DSEE
merge facilities. Branches must be named. Versions within a line of descent are
numbered by DSEE, but the developer can also name them for easy
identification.

ETMS System Design Document
Version 5.0

4-5

(2) Configuration Manager — provides automatic and controlled building of object
code (executable programs) by use of the system model and the configuration
thread.

(a) The system model is a blueprint for building a program. It defines the
elements that must be compiled and linked to create an object, and where
they can be found. The system model also defines the dependencies that
exist between elements and objects. (If an element is changed, which
other elements should be re-compiled and which objects rebuilt?)

(b) The configuration thread separately defines the versions of each element
for the build.

The system model and configuration thread thus allow separate control over
program structure and version. When DSEE builds a program, it records the
versions of each element used in the build and saves all the intermediate object
code as well as the final result. When rebuilding a program, DSEE reuses the
object code, as long as no dependent elements or objects have been changed.
This provides more efficient builds, particularly when several developers are
working on one program.

(3) Release Manager — is used when a release of a system is made. The release
manager uses the information recorded during the build of the system to
determine exactly which version of each system component should be released.
The release manager sends all source code; build tools (compilers, linkers,
etc.), and the executable code from DSEE to a location identified by the
developer. The release manager thus allows a complete, rebuildable version of a
software system to be generated and saved outside of DSEE for safekeeping or
for delivery to a customer.

Five DSEE commands are used to create an executable release version of each
DSEE-maintained program: set system, set model, set thread, build, and create release.

(1) Set system — In the DSEE environment, a system is a directory that contains
references to the software modules used in an executable program. Each
program built in the DSEE environment must have a system directory acting as
a database for the build. All information and objects needed during a build are
stored in this directory. The set system command defines the current system
and conveniently restores the work settings (the current system model and
library) to those last used.

(2) Set model — A system model tells DSEE how to construct a particular
program. It specifies the source code, tools, and building procedures required
to compile and bind a program. The set model command selects the model to
be compiled and worked on during the development session.

ETMS System Design Document
Version 5.0

4-6

(3) Set thread — The set thread command and its options define and validate the
current configuration thread. The configuration thread (a list of rules written in
the configuration thread language) specifies which versions of the files listed in
the model are to be used in the build.

(4) Build — Once the current system, current system model, and current
configuration thread have been set, the developer is ready to build the program.
When DSEE builds a component, it draws on the system directory, system
model, and configuration thread to construct the specification. The
specification determines which element versions, regular files, tools, translation
rules, and options are needed to build the component. DSEE searches through
the stored pool of previously built components-reusing existing components
before building new ones. The results of the build are then stored in this binary
pool so that with each modification, only the altered components have to be
rebuilt.

DSEE also generates a build map that documents the specification in a readable
form. It contains information such as the identification of the developer, the
system model setting, the translation rules, the elements versions, and the files
used in the build.

(5) Create release — When a system or system component release is declared,
DSEE copies all object code to a release directory accessible for general use.
The create release command safeguards all or part of a previously built
program. The command declares the specified build, assigns a name to the
release, creates a release directory, copies the release's derived objects and
specifications to the release directory, and creates another user-readable build
map documenting each derived object in the release.

4.2.4 System Routines

The DOMAIN system routines are special-purpose subroutines (provided by HP/Apollo) that
may be used with any of the DOMAIN supported programming languages. These routines are
invoked by pre-defined subroutine calls. The object code for the system routines is
automatically included at the time that a program is built.

4.2.4.1 Graphics

The DOMAIN system provides several levels of routines for interacting with graphics
hardware. The ETMS utilizes the group of graphics routines known as the Graphics
Primitives Resource (GPR), a set of fairly low-level graphics functions. The use of GPR
places much of the burden of the graphics programming on the application, but allows the
graphics hardware to be customized for better performance. The GPR routines are fully
integrated with the DOMAIN Display Manager; this allows customized graphics to be
generated within the normal, flexible, multi-windowing environment.

ETMS System Design Document
Version 5.0

4-7

The ETMS uses GPR to generate the graphics for the ASD. The ETMS functions that have
been converted to C use the X windows system.

4.2.4.2 Mailboxes and Sockets

The mailbox routine is a facility for inter-process communications.

(1) A process can create a mailbox.

(2) The process can then become the server to the created mailbox.

(3) Other processes can connect as clients to the mailbox.

(4) The servers and clients can then transmit information between them through
mailbox channels.

The mailbox allows servers and clients to be on the same or separate nodes. Mailboxes are
identified by logical names, allowing the physical locations of the servers and clients to be
transparent to each other.

The ETMS uses mailboxes for communications among the various ETMS functions at each
site. A mailbox is implemented to ensure that no messages are lost.

ETMS functions that have been converted from Pascal to C use TCP/IP sockets rather than
mailboxes for interprocess communication. Because ETMS operates in a mixed environment,
bridge programs are used to convert data from one protocol to the other.

4.2.4.3 Mapped Files

Mapping routines associate a disk file with an area of a process virtual memory. Once a file is
mapped, a process can gain access to any part of it by providing the address of the desired
data. With files of fixed length records, the address of any record can be computed. The
operating system gets the necessary pages of a file into physical memory through the normal
demand paging mechanism. Multiple processes can share mapped files, although for write
access, the process must be on the same node. The mapping routines do not detect or resolve
contention between multiple processes.

Mapped files are a particularly useful feature in Pascal programming because they allow
quick, random access to large files that would normally be read sequentially. Mapped files
have other advantages:

(1) When the process that mapped the file terminates (either normally or through a
software interrupt), the final contents of the file are paged back to the disk.

(2) The process can then remap the file when it restarts and not lose any data.

The ETMS uses mapped files to implement all the traffic modeling databases and the buffers
for the buffered inter-process communications routines.

ETMS System Design Document
Version 5.0

4-8

4.2.4.4 Mutual Exclusion Locks

A mutual exclusion (mutex) lock routine coordinates processes that access a shared resource:

(1) A mutex lock can be defined by the sharing processes and associated with a
resource, such as a mapped file.

(2) The processes can then be implemented so possession of the mutex lock is
required to access the resource.

(3) The routines ensure that only one process has possession of the mutex lock at a
time.

The ETMS uses mutex locks to control shared data access in the Generic Buffering Package
(GBP).

4.2.4.5 Eventcounts

Eventcount routines can be used to synchronize processes with each other or with system
events. An eventcount is a value that can be incremented or decremented at the occurrence of
some event. The event can be system-defined (such as an I/O operation or clock time) or an
event within an application program. Processes can wait for events until the eventcount
reaches some value.

The ETMS uses eventcounts in many places, including the periodic generation of data for the
ASD and synchronization of the traffic modeling processes that use buffered inter-process
communications.

4.2.4.6 Process Management

The process management routines allow a process to invoke and monitor other processes.
The process which does the invoking is known as the parent, while the processes invoked are
known as the children. A parent process can start the execution of a child on the same or a
different node. The parent can wait for the child to be successfully started and can then
re-check the status of the child during execution.

Process management routines are useful when the execution of one process is directly
dependent on the execution of others. When a process directly invokes other processes, it
knows explicitly that they are executing before it begins executing itself.

The ETMS uses the process management routines for the traffic modeling functions. The I/O
processing for these functions is performed by separate processes that run concurrent with
the data processing and ensure that each node's processing resources are fully utilized. The
I/O processes (without which the data processing is impossible) are started up as children to
the main process.

ETMS System Design Document
Version 5.0

4-9

4.2.4.7 Miscellaneous

Other types of useful system routines have been implemented throughout the ETMS but do
not significantly affect the design approach. These are as follows:

(1) Display Manager Routines - allow a process to create and manipulate windows
for showing text output on the display screen.

(2) Time Routines- allow a program to access the current time and date from the
operating system and to perform conversions between different time formats.

(3) Variable Formatting Routines- allow data to be converted from one Pascal data
type to another. Variable formatting is used to process inputs that may be in an
undetermined format and to transmit variable length records between ETMS
processes.

